125 -14]

STATUS: PENDING 20110613 OCLC #: 79077197

REQUEST DATE: 20110610 NEED BEFORE: 20110710 SOURCE: ILLiad
78756348

BORROWER: AZU RECEIVE DATE: DUE DATE:

RENEWAL REQ: NEW DUE DATE: SPCL MES:

LENDERS: CUY, CUY, *ZAP, BRI, BRI

TITLE: Problem solving by simulation : IMACS European Simulation Meeting, Esztergom, Hungary,

28-30 August 1990 /

ISBN: 9789633725108

IMPRINT: Budapest : Scientific Society of Measurement and Automation 1990.
DISSERTATION: [1] Proceedings -- [2] Posters.

ARTICLE: Rozenblit, J.W.: Simulation Modeling in Design Generation and Solution
" ISSUE DATE: August 1990

PAGES: 135-141

VERIFIED: <TN:952031><ODYSSEY:150.135.238.6/ILL> OCLC

SHIP TO: ILL/UNIVERSITY ARIZONA LIBRARIES/1510 E UNIVERSITY/TUCSON AZ 85721-0055

BILL TO: same//FEIN 74-2652689//BLLD acct#51-105

SHIP VIA: Ariel, Odyssey or Library Mail

MAXCOST: IFM - $50

COPYRIGHT COMPLIANCE: CCL

ODYSSEY: 150.135.238.6/ILL

FAX: (520) 621-4619 //ODYSSEY PREFERRED/IL... HARIEL IS‘O» lgbf 7,3[()
EMAIL: askddt@u.library.arizona.edu * .
AFFILIATION: AZNET ; GIF ; GWLA ; SHRS

BORROWING NOTES: For Book Chapter requests, scan the chapter only, do not lend book. If over

your
page limit, please CONDITIONAL request. Thank you.

PATRON: Valenzuela, Michael L

Jrq Rit 37| 7o

Date __¢/1/1
Initials _T¢ ;
PS A
Pages ___9

AZU.HA

UNIVERSITY OF CALIFORNIA

Northern Regional Library Facility

ELECTRONIC DELIVERY COVER SHEET

WARNING CONCERNING COPYRIGHT RESTRICTIONS

The copyright law of the United States (Title 17, United States Code) governs the
making of photocopies or other reproductions of copyrighted materials.

Under certain conditions specified in the law, libraries and archives are
authorized to furnish a photocopy or other reproduction. One of these specified
conditions is that the photocopy or reproduction is not to be “used for any
purpose other than private study, scholarship, or research.” If a user makes a
request for, or later uses, a photocopy or reproduction for purposes in excess of
“fair use,” that user may be liable for copyright infringement.

This institution reserves the right to refuse to accept a copying order if, in its
judgment, fulfillment of the order would involve violation of copyright law.

PROBLEM SOLVING BY SIMULATION

IMACS EUROPEAN SIMULATION MEETING

Esztergom, Hungary
28-30 August 1990

PROCEEDINGS

Edited by A. JAVOR

IIT.

Iv.

THEORY

Sensitivity Analysis of Simulation Experimenlts: Regression
Analysis and Statistical Design
J.P.C. Kleijnen

Estimates of Reliability by Analytical and Simulaltion Methods
V.V. Kalashnikov

Conceptual Modelling in Discrete Event Simulation Using
Diagrammatic Representations
R.J. Paul, V. Ceric

Simulation Modelling in Design Generation and Solution
J.W. Rozenblit

Partial Functions in Simulation: Formal Models and Calcull
V.M. Antimirov, D.E. Naidich, V.N. Koval

A New Optimizalion Method for Combined Simulation
I. Molndr, S. Hardhienata

Criteria for Comparison of Software Systems for Continuous
Simulation
P. Cerny

A Semantic Open-Ended Approach to Speclal Simulation Systems
M. Frank, S. Strohmeyer

A Study of Deductive Types of Automatic Reasoning by Means of
Simulation
F. Capkovic

TRAFFIC AND CONTROL

Solving Highway Safety Problems Using Simulation Model NARD
S. Basu

Train Driving Simulator
Zhang Dazhang, Wang Qianhua, Wen Li

Computer Simulation Study on Performances of Permanent Magnet
Levitation Vehicle with Mechanical Air-Gap Controller
M. Abe

Control Design Using DYNAMO
M.S. Mahmoud, S.M. El-Said

The Computer Simulation of Automatic Control System Including
Power Electronic Circuits
Wang Zhaoan, Zhuo Fang, Li Min

11

127

143

149

171

181

189

203

213

SIMULATION MODELLING IN DESIGN GENERATION AND SOLUTION

Jerzy W. Rozenblit

Dept. of Electrical and Computer Engineering
The University of Arizona
Tucson, Arizona 85721
US.A

ABSTRACT

The paper discusses a simulation modelling-based system design methodology. The
methodology, termed Knowledge Based Simulation Design (KBSD), employs simulation and
artificial intelligence concepts to support design model development and performance evaluation.
A formal representation scheme called system entity structure is employed to structure the model
of a system to be designed. The generation of design solutions consist in a goal driven, rule-
based selection and synthesis of model static structures. More specifically, a model is synthesized
from components identified through the system entity structure and stored in the model base.
Performance of design models is evaluated through computer simulation. The best model (with
respect to trade-off criteria over the set of performance measures) constitutes a design solution.

1. INTRODUCTION

Knowledge-based frameworks consider design as a technological activity in which knowledge
about a specific domain is used to represent design artifacts, constraints, and requirements. It is
an activity that seeks all relevant knowledge and combines it to produce a design solution. Design
is often considered as a search process in which a satisfactory design solution is produced from
a number of alternatives [1,2]. The search proceeds in a design space whose elements are design
objects (components) and attributes (parameters).

Design frameworks differ mainly in the underlying knowledge representation scheme and the
search methods employed for solution generation. However, all the methodologies attempt to
capture and enumerate alternative solutions in a design domain. Design knowledge should be
organized in such ways that it can be manipulated effectively and efficiently. The system design
approach proposed by Rozenblit [3,4], termed Knowledge-Based Simulation Design, focuses on
the use of modelling and simulation techniques to build and evaluate models of the system being
designed. It treats the design process as a series activities that include the following phases:
specification of design levels in a hierarchical manner (decomposition), classification of system
components into different variants (specialization), selection of components from specializations
and decompositions, development of design models, experimentation and evaluation via simulation,
and choice of design solutions.

In the ensuing sections, we shall define the design problem and demonstrate how the above
phases of the methodology can effectively support generating design solutions.

2. DESIGN PROBLEM FORMULATION

As we have pointed out in the introduction, the design process is often considered as a search
problem. In our approach, we generate a target design model (a goal state) which best satisfies
design constraints and requirements. Thus, the problem can be formulated as follows:

Given a set of design objectives, constraints, and requirements OCR, find a design model DM*
such that: DM* = best{DM;,i = 1,...,n}, where each DM; is a design model that satisfies the
OCR,ie., OCR(DM,), (a set of objectives, constraints, and requirements satisfied by design model
DM;) is a subset of OCR, and best is a function ranking and selecting the design alternatives DM;.

135

The Knowledge-Based Simulation Design methodology provides a set of methods for
generating a solution to the above problem. The solution process consists is constructing a set
of alternative design models DM;s, simulating their behavior, and selecting the model DAf*.

3. DESIGN SOLUTION GENERATION

The design model construction process begins with developing a representation of design
components and their variants. To appropriately represent the family of design configurations, we
have proposed a representation scheme called the systemn entity structure (SES) [4,5]. The scheme
captures the following three relationships: decomposition, taxonomy, and coupling. Decomposition
knowledge means that the structure has schemes for representing the manner in which an object is
decomposed into components. Taxonomic knowledge is a representation for the kinds of variantg
that are possible for an object, i.e., how it can be categorized and subclassified. The synthesis
(coupling) constraints impose a manner in which components identified in decompositions can be
connected together. The selection constraints limit choices of variants of objects determined by the
taxonomic relations.

Beyond this, procedural knowledge is available in the form of production rules. They can be
used to manipulate the elements in the design domain by appropriately selecting and synthesizing
the domain’s components. This selection and synthesis process is called pruning [3,4]. Pruning
results in a recommendation for a model composition tree, i.e., the set of hierarchically arranged
entities corresponding to model components. A composition tree is generated from the system
entity structure by selecting a unique entity for specializations and a unique aspect for an entity
with several decompositions.

The final step in the framework is the evaluation of alternative designs. This is accomplished
by simulation of models derived from the composition trees. Discrete Event System Specification
(DEVS) [5] is used as a modeling formalism used for system specification in the methodology.
DEVS provides a formal representation of discrete event systems. It is closed under coupling. This
property facilitates the construction of hierarchical DEVS network specifications.

Performance of design models is evaluated through computer simulation in the DEVS-Scheme
environment [6]. DEVS-Scheme is an object—oriented simulation shell for modeling and design that
facilitates construction of families of models specified in the DEVS formalism. Alternative design
models are evaluated with respect to experimental frames that reflect design performance questions.
Results are compared and traded off in the presence of conflicting criteria. This results in a ranking
of models and supports choices of alternatives best satisfying the set of design objectives.

3.1 Design Model Structure Representation

The interaction of decomposition, coupling and taxonomic relations in an SES affords a
compact specification of a family of models for a given domain. In a system entity structure,
entities refer to conceptual components of reality for which models may reside in a model base.
Also associated with entities are slots for attribute knowledge representation. An entity may have
several aspects, each denoting a decomposition, and therefore having several entities. An entity
may also have several specializations, each representing a classification of possible variants of the
entity.

Figure 1 illustrates a high level system entity structure representation a robot. A robot can
be classified into a mobile or a fixed type through the Motion Specialization. The Subsystem
Decomposition defines major components of the robot, namely, the cognition, control, mechanical
and communication subsystems. The latter can be further classified with respect to the link type.
Some of the entities have variable type attached to them (denoted by a the “-* prefix), which
characterize their properties.

The first subproblem in generating a design solution is to find a set of design model structures

136

(composition trees) that conform to static design constraints and requirements. By static, we mean
the constraints and requirements whose satisfaction can be accomplished prior to simulation of a
design model’s behavior.

Robot ~degree of freedom

l ~cost
II ~scope of work area
Motion
DL, Subsystem
Specialization Decomposition

~s|
. ., ~carrying I
Fixed Mobile ~capacity ~ Communication Control Mechani iti
anical Cognition
Robot Robot Subsystem Subsystem Subsystem Subgsystem
Link Type
Hard Wired Remote

Fig. 1 System Entity Structure Example

Let SCR denote a set of static design constraints and requirements. Let Gen(DES) =
{CTy,CT,,...,CT,} denote all composition trees generated by the system entity structure DES.
Then, the design structure generation subproblem is defined as follows:

Find a set: CTp = {CTy,CTs,...,CT}} such that SCR(CT:) C SCR fori = 1,2,.., k, i.e., CTp is
a set of composition trees that satisfy the static design constraints and requirements.

Rozenblit (3] defined a procedure for generating the Gen(DES) and CTp sets. The procedure,
called generic attribute driven pruning consists in: 1.) defining a set of design performance
attributes (e.g., throughput, average queue length, component utilization), and 2.) traversing the
system entity structure and selecting entities from specializations. This process is computationally
very expensive for large system entity structures; it can only be solved by a non-deterministic
polynomial time algorithm [3,4]. Therefore, instead of the combinatorial enumeration of the
composition trees spawned the system entity structure and searching for admissible trees, we apply
the production rule framework to generate only the trees that satisfy the static constraints.

3.2 Rule-Based System Entity Structure Pruning

Rule based pruning requires that a knowledge base that contains rules for gelection and
configuration of the entities represented by the system entity structure be specified. Production
rules are used to represent design objectives, constraints, user’s requirements and performance
expectations. The pruning process can be interpreted as a search directed by constraints through
the search space consisting of the entities, their aspects and specializations.

The following steps are required to provide the rules that guide pruning of the system entity
structure: 1) for each specialization, specify a set of rules for selecting an entity; 2) for an entity with
several aspects, specify rules for selecting a unique aspect; 3) for each aspect specify synthesis rules
that ensure that the entities selected from specializations are configurable, i.e., the components they

137

represent can be validly coupled. Each rule can be assigned a certainty factor indicating the rule’s
degree of applicability. Recall Figure 1 with the Robot system entity structure. Below, we give
an illustrative selection and a synthesis rule for this entity structure. A full scale Robot synthesis
example is given in [7].

Example of a selection rule:

If budget is relatively high and
working area is usually greater than 25 square feet or
requirement of arm carrying capacity is not heavy (< 1000 Ibs)
The recommended-motion-type is mobile (1.0)

Example of a synthesis rule:

If recommended robot is mobile and
type of motion is mobile-free~flier and
Then robot system is configurable (1.0) and
motion subsystem is free flier (1.0) and
remote communication is required (0.9) and
engine motion mechanism is strongly recommended (r.0)

An expert system shell MODSYN (MODel SYNthesizer) to generate model structures was
developed and implemented [8]. MODSYN’s inference engine uses the backward chaining strategy
to recommend a composition tree. The goal of pruning is given by a configuration defined through
the top level synthesis rule(s). The engine attempts to verify the hypothetical configuration by
checking lower level selection and synthesis rules and/or asking the designer for facts not available
in the data base. By providing answers, the designer instantiates attributes of the design constrainta

and thereby expresses design preferences and expectations. For details, concerning the inferencing
mechanism, we refer the reader to [8].

Rule-based pruning is an effective means of generating recommendations for composition trees
that satisfy static design constraints. It generates the set CT), that constitutes the solution to the
design subproblem defined in Section 3.1. Figure 2a depicts two composition trees derived for
‘the entity structure of Figure 1. After the model composition trees are generated, we proceed to
define model specifications. In our modelling environment (DEVS-Scheme), we can automatically
generate a model ready to simulate.

Mobjje Robot
i ition
Remote Mechanical Control Cogni
Communication System System System
g;'slem
Mobjle Robot
Hard Wired Mechanical Control Cognition
Communication System System System
System

Fig. 2a Composition Trees for Robot Design

138

3.3 Design Modelling and Simulation Environment

The Discrete Event System Specification (DEVS) formalism introduced by Zeigler [5] provides
a means of specifying a mathematical object called a system. Basically, a system has a time
base, inputs, states, and outputs, and functions for determining next states and outputs given
current states and inputs. DEVS-Scheme, an implementation of the DEVS formalism in Scheme
(a Lisp dialect), supports building models in a hierarchical, modular manner. This is a systems
oriented approach not possible in popular commercial simulation languages such as Simscript,
Simula, GASP, SLAM and Siman (all of which are discrete event based) or CSMP and ACSL
(which are for continuous models).

In the DEVS formalism, one must specify 1) basic models from which larger ones are built,
and 2) how these models are connected together in hierarchical fashion. In this formalism basic
models are defined by the structure: M =< X, 5,Y,8,\,ta >, where X is the set of external input
event types, S is the sequential state set, Y is the set of external event types generated as output,
6int (8cst) is the internal (external) transition function dictating state transitions due to internal
(external input) events,) is the output function generating external events at the output, and ta is
the time-advance function. Rather than reproduce the full mathematical definition here, we refer
the reader to [5].

Given a composition tree CT, we specify basic models for each leaf entity and coupling
descriptions governing the hierarchical connection of basic models. Coupled basic models form
coupled models that may in turn be connected to form a higher level coupled model. The coupled
model specification is accomplished automatically in the DEVS-Scheme environment. Figure 2b
illustrates the models resulting from the composition trees of Figure 2a. In the context of design
solution generation, DEVS-Scheme is used as means of design model behavior specification and
evaluation by simulation.

Mobile Robot - Model 1
Remote .
Communication Mechanical | Control | Cognition
System System System System
Mobile Robot - Model_2
Hard Wired . -
s onti Mechanical | Control Cognition
Consl;r:tl:l:‘c ation System System System

Fig. 2b Model Structures for Composition Trees of Fig. 2b

3.4 Simulation and Evaluation
. We separate the model description from a simulation experiment under which the model is

observed. This facilitates much greater flexibility in design model ranking and relieves the models
from the burden of collecting data about themselves.

139

A set of circumstances under which a model system is to be observed and experimented
with is called an experimental frame. Zeigler (5] has shown that an experimental frame can be
realized as a coupling of three components: a generator (supplying a model with an input segment
reflecting the effects of the external environment upon a model), an acceptor (a device monitoring a
simulation run), and a transducer (collecting and processing model output data). The specification
of experimental frames in the DEVS-Scheme environment is equivalent to that of specifying basic
models and their corresponding couplings.

Experimental frames reflect I/O performance design requirements. For example, an
experimental frame for evaluating the average task processing time by a robot could have the
following constituents: a generator producing a workload of tasks for the robot model, an acceptor
monitoring the observation interval and the length of the queue of tasks at the robot’s workeell, and

a transducer recording the times of task completions, and computing the average task execution
time.

The data collected from alternative design models may now be compared in order to select
the best design solution. Clearly, design performance measures may conflict with one another.
Therefore, we propose to use Multiple Criteria Decision Making (MCMD) as a means for ranking
candidate designs. The concept of design selection using the experimental frame is depicted in
Figure 3. Some MCMD criteria and simple examples of design trade-offs are presented in Hu [9].

DM1 Design Models DMn

L)

Experimental Frames

MCMD Module
Design Trade-offs

4

DPM*

Fig. 3 Design Evaluation and Selection
To gather up the strands, we now summarize the design solution generation phases.

4. DESIGN GENERATION PHASES REVISITED

1. We conceptualize decompositions and specializations of components of the system being
designed using the system entity structure. Design models associated with atomic entities
must be developed and placed in the model base. The system entity structure generates the
set Gen(DES) of all composition trees underlying possible design models.

2. We develop a rule base to be used in the pruning process.

140

3. We invoke the pruning engine to generate recommendations for candidate solutions to the
design problem in the form of model composition trees. This results in the set CTp =
{CT\,CT;,...,CT}} such that SCR(CT;) C SCR fori=1.2,.., k.

4. We invoke the transformation procedure that synthesizes models from the composition ‘trees
obtained in phase 3 using the DEVS-Scheme modelling environment.

5. To carry out a simulation experiment, we specify an experimental frame. We accomplish this by
defining DEVS-Scheme components that: a.) generate input stimuli to the model, i.e., discrete
event input segments; b.) observe model output; and c.) control the sirulation experiment by
observing model variables.

6. We evaluate simulation results and rank models with respect to the performance measures that
express design objectives and requirements. MCMD criteria are used to define the best function
which generates DM* = best{DM;{ = 1,...,n}.

5. CONCLUSION

We have described a systematic approach for generating simulation models of systems. In the
general system design context, the presented framework affords the following benefits: the formal
concepts offered by our methodology integrate the design steps, facilitate a uniform treatment of
design at different levels of abstraction. By providing performance evaluation mechanisms, the
methodology facilitates comparative studies of design alternatives. This improves the decision
making process, and eventually increases the chances of getting managerial approval for installing
the proposed solution.

REFERENCES

[1.] Gero, John S. et. al. An Approach to Knowledge-Based Creative Design, Proc. of NSF
Engineering Design Research Conference, Amherst, pp. 333-346, June 1989

[2.] Yang, J. and J.W. Rozenblit, Case Studies of Design Methodologies: A Survey, Proc. of the
International Conference on Al, Simulation and Planning in High Autonomy Systems, IEEE
Computer Press, pp. 136-141, 1990

[3.] Rozenblit, J.W., A Conceptual Basis for Integrated, Model-Based System Design, Ph.D.
Dissertation, Department of Computer Science, Wayne State University, Detroit, Michigan,
1985

[4.] Rozenblit, J. W. and Zeigler, B. P. Design and Modelling Concepts, in: International
Encyclopedia of Robotics, Applications and Automation, (ed. Dorf, R.) John Wiley and Sons,
New York, pp. 308-322, 1988

[5.] Zeigler, B. P., Multifacetted Modelling and Discrete Event Simulation, Academic Press,
London, 1984)

[6.] Zeigler, B. P., Hierarchical, Modular Discrete Event Modelling in an Object Oriented
Environment. Simulation Journal, vol 49:5, pp. 219-230, 1987

i7.] Rozenblit, J. W.and Y. M. Huang, Rule-Based Generation of Model Structures in Multifacetted
Modelling and System Design, ORSA Journal on Computing (submitted)

[8.] Huang, Y. M., Building An Expert System Shell for Design Model Synthesis in Logic
Programming, Master Thesis, University of Arizona, Tucson, Arizona, 1987.

[9.] Hu, J., Knowledge-Based Design Support Environment for Design Automation and Perfor-
mance Evaluation, Ph.D. Dissertation, Department of Electrical and Computer Engineering,
‘University of Arizona, Tucson, Arizona, 1989

141

